
Neural Embeddings of Financial Time Series Data
May 19, 2020

Alik Sokolov, Jonathan Mostovoy, Brydon Parker, and Luis Seco

Alik Sokolov is the Managing Director of Machine Learning at RiskLab: a global labora-
tory headquartered in Toronto that conducts research in financial risk management.
Email: alik.sokolov@gmail.com
Jonathan Mostovoy is the Managing Director of Research and Partnerships at RiskLab
Toronto.
Email: mostovoy@math.toronto.edu
Brydon Parker is a Researcher at RiskLab Toronto and a Data Scientist at Omnia AI:
Deloitte Canada’s AI Practice.
Email: bryparker@deloitte.ca
Luis Seco is the Head of RiskLab Toronto, Director of the Mathematical Finance Program
at the University of Toronto, Director of Fields-CQAM, and CEO of Sigma Analysis &
Management Ltd.
Email: seco@math.toronto.edu

Key Takeaways:

1. The authors propose a general methodology for creating tailored embeddings of
financial time series data

2. The authors demonstrate one approach for creating such embeddings, analyze the
induced similarity measure, and compare and contrast it with the traditional ap-
proach of using covariance and correlation as a similarity measure for securities

3. The authors discuss other applications and advantages of this approach, including
accounting for probabilistic estimates of future behaviour, and flexibility in incor-
porating varying business objectives

mailto:alik.sokolov@gmail.com
mailto:mostovoy@math.toronto.edu
mailto:bryparker@deloitte.ca
mailto:seco@math.toronto.edu

Abstract

The dominant approaches for financial portfolio construction are reliant on estimating
sample covariance and correlations matrices, which serve as an input into a number of
classical portfolio construction techniques. These classical approaches are not forward
looking, constrained by the ability to estimate covariance and correlation matrices, and
inflexible to incorporating additional information. The authors propose a new approach
of utilizing learned representations from deep learning networks to augment such classical
techniques. This approach is able to incorporate learned estimates of future performance,
and can be customized to create tailored representations best suited towards meeting
varying financial objectives. This paper showcases one example of such an embedding,
compares and contrasts it with classical approaches to portfolio construction, and dis-
cusses additional possibilities for applying representation learning in quantitative finance.

Our work is motivated by viewing covariance and correlation as a special case of a
distance metric, or a measure of dissimilarity between securities. Machine learning has
been used to learn metrics directly (W. Li et al. 2018), as well as by leveraging deep
learning in semi-supervised contexts (X. Li et al. 2019). Much work has also been put
towards developing general-purpose representations (Bengio, Yoshua 2012) for common
data sources, classical examples being words (Mikolov et al. 2013), text segments (Cer
et al. 2018), (Devlin et al., n.d.) and images (He et al. 2015).

In parallel, in the realm of finance, the Efficient Market Hypothesis (EMH) is generally
accepted: this hypothesis states that all current information is already factored into
a security’s price. The EMH is particularly well established in terms of returns data
(financial time series and their correlation structure), and although some work exists
challenging the EMH (Varaku 2019) in this context, the usefulness of pure time-series
based models for statistical arbitrage is still questionable.

In contrast, deep learning offers the flexibility of creating useful representations of
complex datasets. Even in cases where direct prediction is not necessarily useful (as in
the example presented in the Representations section below), deep representations have
proven to be incredibly powerful.

Time series datasets are used extensively for hedging and portfolio construction, de-
spite the difficulty of forecasting individual price movements. Correlation or covariance
matrices computed from these time series, being distance metrics themselves, are fre-
quently used for portfolio optimization (Markowitz 1952). We therefore propose an alter-
native approach for learning distance metrics that can ultimately be used for tasks beyond
just portfolio optimization. Furthermore, our approach has the advantage of incorpora-
tion future expectations, as these metrics can be optimized by solving forward-looking
tasks. In addition, it offers the flexibility of engineering different metrics by choosing
different relevant tasks.

Machine learning has been used extensively in finance, but most applications of ma-

1 of 15

chine learning are based around unsupervised techniques. Over the past few years, unsu-
pervised clustering algorithms have found root in portfolio construction (León et al. 2017).
As dealing with time series in general, unsupervised algorithms such as autoencoders,
Deep Belief Networks, or PCA have consistently shown to create more workable feature
representation of high-dimensional and unstructured time series data (Bao, Yue, and Rao
2017). Unfortunately, however, such approaches are limited in their ability to create use-
ful representations as they are trained to solve tasks (such as reconstruction loss) that are
unrelated to the ultimate objective. This flaw is principally why our approach utilizes a
supervised algorithm instead.

The remainder of the introduction explains the structure of the paper, while also
stating certain general implications of each section. The Technical Background section
introduces the conceptual background required for both machine learning and finance.
The Definitions and Notation section outlines the preliminary definitions and notation
to be used throughout the remainder of the paper. The Approach and Empirical Im-
plementation section outlines the general process for leveraging learned representations
in finance, and outlines a sample empirical implementation for a transformer network to
learn the structure of financial time series of NYSE and NASDAQ listed equities. The
Evaluation Representations section discusses how these representations can be evaluated.
The final sections wrap up the paper with the significance and potential extensions of
our work, specifically the potential to operationalize learned representations for a wider
variety of tasks in finance using transfer learning techniques.

Technical Background

It is our intention to create connections between two vast and well-established fields:
finance and machine learning. As such, in hopes of making this paper more accessible to
researchers or professionals in either finance or machine learning, we have provided the
following short colloquial backgrounds on each discipline included in this paper.

Machine Learning

Three interrelated concepts are necessary to discuss for this paper: transfer learning,
representations, and the transformer network. We do, however, assume a very basic
knowledge of deep learning and neural networks.
Representations: A learned representation may be thought of as a transformation
of data into a more useful space via a machine learning algorithm. The usefulness of
re-representing data into another space comes from the task at hand; common benefits
are better performance on tasks such as classification, as well as the ability induce a
metric on a dataset that did not originate with an intuitive notion of distance. A classical
example is that of word representations, or word embeddings. Historically, a big barrier
for natural language processing was the high dimensionality of text data, with no obvious
way of representing individual words numerically in a useful manner. It turned out that by

2 of 15

training a neural network using a ”fill-in-the-blanks” task, the numerical representations
created become highly useful (Mikolov et al. 2013). This can be seen in the classical
example in Exhibit 1, where gender becomes an emergent property of our representation
space (as can be seen with the fact that the vector separating ”man” and ”woman” is the
same as the vector separating ”king” and ”queen”):

Exhibit 1: Word Embeddings Illustration

Although this result is easy to visualize and understand intuitively, word embeddings
have been chiefly responsible for the formidable progress made today in the field of natural
language processing. It is worth noting that word embeddings are also incredibly useful,
even though the original network used to create these representations has little standalone
practical use (Mikolov et al. 2013).

The power of deep learning (in comparison to other machine learning algorithms) for
the purposes of general representation learning is well known (Bengio, Courville, and
Vincent 2012). It has created breakthroughs in fields as diverse as natural language
processing, image processing, and biological research. Furthermore, learning state space
representations in reinforcement learning has recently propelled AI to dominance in games
such as Go and Chess (Silver et al. 2018). This potential is well known to extend beyond
the specific task at hand, and learned representations have been shown to be useful across
a wide variety of adjacent tasks (Zhuang et al. 2019).

In this paper, we will principally be interested in creating a useful representation
of financial assets that can generalize across a variety of applications in the domain of
finance. Later on in this paper, we empirically construct a representation for financial
assets then proceed to demonstrate some of the applications of said representation.
Transfer Learning: Transfer learning may be defined as the use of the resulting em-
bedding function learned via one machine learning algorithm for the purposes of solving
a separate, but similar, task. A common example of this might be using a ResNet repre-
sentation (He et al. 2015), trained on a substantial amount of images for tackling another,
more specific, image classification task.

Transfer learning has become widely used in machine learning, particularly in the
fields of natural language and image processing. The significant level of commonality in

3 of 15

the datasets and the way one processes such data, regardless of task, has been the primary
reason for the wide adoption of transfer learning in these fields. At the same time, transfer
learning in finance is relatively under-explored. We hope to show that applying transfer
learning techniques to the financial time series domain shows significant promise.
Transformer Networks: Time series datasets have long been tackled with Recurrent
Neural Networks, and specifically LSTMs (Siami-Namini, Tavakoli, and Siami Namin
2019). The ”attention mechanism” has been shown to be able to augment LSTM-based
architectures and improve results with NLP tasks (Bahdanau, Cho, and Bengio 2014).
More recently, the Transformer architecture has demonstrated that the recurrent network
architecture can be abandoned altogether in favor of self attention, ushering in a revolution
in the NLP domain (Vaswani et al. 2017). Transformer networks have in the past shown
promising results specifically for time series forecasting (S. Li et al. 2019). In this paper,
we shall utilize the transformer architecture whilst hypothesizing that its ability to capture
long-term dependencies and complex interactions will serve for greater accuracy in solving
the tasks we assign to our network, and ultimately create better representations.

We refer the reader to a review of the aforementioned papers in this section for a
proper introduction to Transformer Networks. For the financially predisposed reader, the
main takeaway we’d like to emphasize is simply the adeptness of transformer networks
for time series.

Finance

Arguably the most common quantitative metric/statistic asset managers look at when
making asset allocations amongst a collection of assets would be sample covariance and
correlation.

A prototypical treatment of covariance and or correlation would be as follows (hence-
forth, ”covariance” may may be swapped without loss of generality for ”correlation”).
First, an asset manager would choose a suitable historical time horizon (e.g. 3 months of
daily ticks) for a collection of time series’ associated to a chosen group of assets. Then,
over said time horizon, they would compute the sample covariance. This sample (histori-
cal) covariance then might be used for a variety of tasks under the assumption that this
past covariance will stay constant for the foreseeable future. Examples of how an asset
manager might utilize the covariance could be in constructing a minimum variance portfo-
lio, a risk parity / equal risk contributions portfolio, or trying to understand fundamental
relationships between assets via PCA. All techniques mentioned have considerable merit,
but all are limited in part due to assumptions of constant covariance.

As discussed previously, the covariance matrix is often used to solve a portfolio op-
timization task. An approach to solving this oftentimes difficult task is to instead first
apply a dimensionality reduction technique. Principal components analysis, PCA, is most
commonly chosen in Finance. In contrast to representations learned by neural networks,
PCA is a linear technique which learns a transformation of the data with the property
that the new representation forms an orthogonal basis in the directions which capture

4 of 15

the most amount of sequential variance. We note that PCA has both a probabilistic
interpretation (calculated by taking the leading eigenvectors of the covariance matrix as
the principal components) and geometric interpretation (linear manifold learning repre-
senting a lower-dimension region of the input space in which data density is maximized).
(Bengio, Courville, and Vincent 2012).

PCA is quintessentially a representation learning technique and, given its level of
familiarity to most readers, may serve as a good intuition for representation learning in
general. We are, however, more interested in representations learned by deep learning
networks for three main reasons:

• PCA is a linear technique, and therefore cannot be applied iteratively (stacked) to
create more complex representations, as opposed to layers in a neural network which
learn more abstract representations as the complexity of a network is increased,
provided a sufficient number of training examples is available.

• PCA takes as an input a simple matrix. We are therefore unable to input tensors
of arbitrary dimensionality, and it is the left to the user of the technique to create
an initial feature representation when working with multi-dimensional data, such
as tensors of stacked time series in our case. When working with deep learning
representations, we are able to use layers such as convolution and self-attention
to work with such high-dimensional data more efficiently, and ultimately create a
convenient vector representation directly from a complex tensor.

• PCA is an unsupervised technique, and the representation it learns may not neces-
sarily be optimal for all tasks. We create our deep representations by first solving
a relevant task, making it more likely that the abstract representation we learn will
be useful for related tasks.

The use of deep learning here is also especially pertinent given the well-known need for
capturing the nonlinear nature of relationships in financial markets: Bengio et al. (Bengio,
Yoshua 2012) emphasizes that deep learning is able to create “abstract” representations:
representations that disentangle the factors of variation present in the input.

In further sections, we will demonstrate the utility of our approach in a common
portfolio construction techniques of choosing representative securities from a hierarchical
clustering of portfolios (León et al. 2017). We demonstrate that instead of the classical
approach of utilizing correlation as an input into the clustering algorithms, one has flex-
ibility in choosing the correct learned representation to define a robust distance metric
that fits the user’s criteria, using learned representations.

5 of 15

Definitions and Notation

Machine Learning

Definition 1
We consider a family of neural networks that we train to learn a function f(X) = ŷ,
where X is a tensor representing raw financial time series (such as the log returns of an
input asset, its sector, etc.), and ŷ is the learned prediction. For our problem, the relevant
dimensions are as follows: X ∈ RT × dfeats , y ∈ Rdtrgt , where T is the length of the input
time series, dfeats is the number of input time series we consider, and dtrgt is the number
of targets we want to make for each input (e.g. future returns at time t, future volatility
at time t, etc.). Lastly, f(X) is found by solving the standard supervised learning task of

minimizing the loss function
dtrgt∑
j=1

Lj(ŷj, yj).

Definition 2
We define the representation for each asset as the learned outputs of our network for the
final network layer (prior to the output layer), Xembed = Fembed(X) = {fj(X) : 1 ≤ j ≤
dembed}, where X is an input tensor, dembed is the dimension of the final neural layer, and
fj(X) is the value neuron j takes for input X.

The motivation for choosing Fembed to output the layer preceding our output layer is
the fact that the final decision function, Foutput(Xembed), is linear. Due to the linearity,
we therefore establish a sense of well-behavedness for our representation. We extract
these embeddings by ”stopping short” of producing our final output, extracting values
Fembed(X) = Xembed, with X ∈ RT × dfeats as above, and Xembed ∈ Rd.

Finance

Definition 3
If we consider a collection of N assets, we define the price and log returns (or, for brevity,
returns) of asset 1 ≤ i ≤ N at time t to be Pi(t) and ri(t) respectively, where:

ri(t) := log(Pi(t))− log(Pi(t− 1))

Further, we refer to {Pi(t) : t0 ≤ t ≤ T} and {ri(t) : t0 ≤ t ≤ T} as the price and
returns time-series of asset i. For this paper, we will always assume time series are finite
(T ∈ N, T <∞).

One of the most important statistics that asset managers look at when making asset
allocations amongst a collection of assets would be sample covariance/correlation, defined
in the classical way on {Pi(t) : t0 ≤ t ≤ t1}. Their interest comes from an appeal to
minimizing risk - the more correlation in a portfolio, the riskier said portfolio. That said,
once a position/portfolio is established, as covariances amongst assets change through
time, asset managers will want to update the way they utilize covariance by rebalancing.

6 of 15

Therefore, after some period of time, say k ∈ N, the asset manager will rebalance based
on {Pi(t) : t0 + k ≤ t ≤ t1 + k}. If we therefore continue looking at covariance in this
updated scenario for k, 2k, 3k, . . . , we refer to |t1 − t0| as the ”window”, and k as the
period of time for which we ”roll-over”. The choice of k and |t1 − t0| being an arbitrary
one, however, is yet another disadvantage of this classical approach.

Definition 4
We train our network by predicting, jointly, several target metrics {yj : 1 ≤ j ≤ dtrgt },
using the time series ri(t). We therefore learn a function f : RT × dfeats− > Rdtrgt that
maps the feature time our features time series, of dimension RT × dfeats , to a prediction for
each of our targets, of dimension Rdtrgt . The definitions of each target we used to train
the network described in this paper may be found in Section 4.

Definition 5
In order to predict the targets {yj}, we add some additional information to the returns
ri(t). We concatenate the time series {ri(t)} with the time series {t} that captures
the relative position of each return (instead of positional encoding as used by Vaswani
(Vaswani et al. 2017)), as well as several additional time series of market returns as
additional features (details outlined in the Empirical Implementation section).

We concatenate all of the time series above into a matrix X, of dimension T × dfeats,
with dfeats as the number of input time series used.

Approach and Empirical Implementation

General Process for Leveraging Learned Representations

In general, our proposal for a new, highly general ”learned representation for financial
assets” follows the following schema. We describe this proposal from the outlook of a
financial analyst.

1. Choose a collection of financial assets for which a financial analyst would be inter-
ested in understanding their interrelationships to a higher degree under a particular
lens; e.g., portfolio optimization, behaviour in volatile markets, etc.

2. Make a priori and collect target metrics or tasks {yj}, that should be related to
the lens that the analyst would like to look at the interrelationships under; e.g., log
returns, covariance, etc.

3. Train a neural network on said target metrics and extract the related representation.

4. Evaluate and use the learned representation in the context that it was created for.

This process therefore allows for the substitution of machine learning for classical
statistics found in finance so as to create a highly bespoke/customizable (in terms of the
lens an analyst would like through) representation of any collection of financial assets.

7 of 15

We showcase on particular implementation of this process below.

Data and Prediction Task

The dataset used for our empirical analysis was the daily adjusted-close price history of
all stocks listed on the New York & NASDAQ Stock Exchanges from 2000 to 2018. The
only filters we applied is to only use tickers with at least 128 days of returns history at
the time they are sampled, and removing tickers that had data issues with their adjusted
closing prices as observed on Yahoo Finance (tickers that had more than 10 days of over
100% or under -50% returns were removed, as these were found not to reflect accurate
historical prices).

Upon converting the times series for N ≈ 6, 000 tickers to their log-returns, Ri(t), we
use a lag date window of T days in order to incorporate additional longitudinal history
for each prediction. In particular, we calculated the following dfeats metrics:

• The log returns of the sector corresponding to each stock, calculated using the
weighted average stock prices in the sector
• The log returns of the sector corresponding to each stock, calculated using the

arithmetic average stock prices in the sector
• The log market log returns, calculated using the weighted average of all the stocks

in our dataset
• The log market log returns, calculated using the arithmetic average of all the stocks

in our dataset

Our approach involved applying T days of log-return history to predict future stock
performance in terms of returns, absolute returns, and volatility at several points in the
future. For this paper, our choice of T was taken as 128 days. The network was optimized
on the following dtrgt joint tasks:

• Predict log returns and absolute log returns 1, 7, 14, and 28 in the future for each
reference date

• Predict volatility 7, 14 and 28 days in the future for each reference date

We trained our network based on several concurrent tasks of forecasting both returns
and volatility measures (absolute returns and standard deviation), across a variety of time
horizons. This is done in order to create more general representations, suited for a wider
range of downstream tasks. Finally, we calculate the total loss as the sum of L1 losses for
each individual prediction.

8 of 15

Neural Network Architecture

We utilize the Transformer encoder layer, per Vaswani (Vaswani et al. 2017), as the
core component of our neural network. This choice for the architecture is due to the
recent successes it has had in model sequential natural language data, as well as superior
scalability in GPU environments and a slight advantage in performance on our task over
comparable recurrent architectures.

We utilize multi-head attention and position-wise feedforward networks inside each
encoder layer per Vaswani, but do not use positional encodings. Instead, we concatenate
the ordinal position of each return ri(t) to our features vector as an additional feature.

As per Vaswani, the inputs and outputs of each layer are of dimension dmodel, and
the output of each sub-layer is LayerNorm(x + Sublayer(x)). We also utilize a modified
Transformer encoder layer as the first encoder layer, where residuals connections are not
utilized, and the output of each sublayer is simply LayerNorm(x).

The motivation behind the modified Transformer encoder layer is to use an interme-
diate representation in order to create some internal features within the neural network,
aiding our model in learning features representative of the global statistics of the time
series (e.g. mean and variance). Although the transformer network excels at finding
interactions between log-returns of individual days (as each transformer layer looks at
pairwise interaction between the tokens, or in our case, days), it can struggle to find
global structure across all tokens / times, which we know to be important in financial
markets. In order to help the network capture these long-term dependencies, we connect
the output of the first transformer block to the embedding layer of the final encoder block,
computing Nfeatures additional metrics based on the learned representation corresponding
to the final Ntokens tokens of the Modified Transformer Layer (this adds an additional
Ntokens ∗ Nfeatures neurons to embedding layer). In our experiments, we observe that this
helped the network converge much faster and to a better local minimum, allowing it to
learn global features around the overall time series more effectively.

Our final architecture uses nblocks transformer layers (1 with additional connections to
generate internal features and (nblocks−1) standard layers per Vaswani) with nheads atten-
tion heads each.We connect the time series representation from the first transformer layer
to our first hidden layer, and perform aggregations on the intermediate representation to
capture the global time-series structure. We use an embedding dimension of nembed and
encoder feed-forward network dimension nfeedforward, and a dropout of Pattention drop for the
transformer attention layer, and Presidual drop for the transformer residual layer. This is all
consistent with the Transformer network used in the original paper (Vaswani et al. 2017),
with slightly lower network dimensionality, which we found was the appropriate size given
the size of our training dataset, the dynamics of our problem.

We added two hidden layers after the transformer blocks, with dimensionality of
dhidden, and dropout of Phidden drop applied to each layer. We then use the output of
the final feedforward layer to extract the embeddings of each particular stock for our
downstream analysis tasks, simulating the use of such an embedding as a learned distance
metric. These are added primarily to reduce the dimensionality of our final representa-

9 of 15

tion, as well as add some additional expressiveness to our network to further linearize our
final representation.

We utilized RADAM (Liu et al. 2019) as our optimizer, with a learning rate of rlearning,
in order to speed up convergence and simplify the hyper-parameter search for the optimal
learning rate. We found that convergence was fast and did not benefit from a warm-up
epoch when using the RADAM optimizer, and that we the hyper-parameter search was
significantly simplified as we were able to set a narrower and higher range of learning
rates.

Finally, we experimented with our batch size and early stopping criteria. The hyper-
parameter choices for our final architecture are summarized in Exhibit 2:

Hyperparameter Description Final Choice
Lag window of T days 128
Number of feature time series dfeats 7
Number of target metrics dtrgt 11
Embedding dimension nembed 256
Number of transformer blocks nblocks 6
Transformer block number of heads nheads 16
Transformer block feed-forward network di-
mension nfeedforward

1024

Transformer block attention dropout
Pattention drop

0.1

Transformer block residual dropout
Presidual drop

0.1

Ntokens for feature computation 3
Internal features computed based on token em-
beddings

Standard deviation, L1, L2,
and L3 norms (Nfeatures = 4)

Hidden layer dimensions dhidden 256, 128
Hidden layer dropout Phidden drop 0.25
Optimizer RADAM
Learning rate rlearning 5× 10−5

Batch size 32
Evaluate every 200 steps
Early stopping no improvement after 3 consec-

utive evaluations

Exhibit 2: Hyperparameter Choices

The best model found, based on the final hyperparameter choices described above,
had an aggregate L1-loss of 1.447×10−2, 19.25% lower compared to a statistically derived
benchmark loss of 1.792×10−2. Our approach for calculating the benchmark was estimat-
ing future returns and volatility using statistical measures based on historical averages
during our lag window of T days, using statistical estimates for each task as follows.

This tells us that the network is able to learn a representation that successfully cap-
tures the structure of the time series, and is able to make predictions on future perfor-
mance reasonably well. Most of the gain over a statistical estimate comes from predicting
volatilities and absolute log returns, with the predictions for 1, 7, and 28 day log returns
being only marginally better than utilizing the mean. This is consistent with literature
and the known difficulty of predicting returns; but, as we will see, does not prevent us
from learning representations having properties that can be generally useful for a range
of different tasks.

10 of 15

Evaluating the Representations

We evaluate our representations by using them to supplement a common approach in
quantitative finance of findings clusters of stocks using clustering techniques such as hier-
archical clustering (León et al. 2017), which can then be used for downstream tasks such
as hedging and portfolio construction.

We compare two approaches towards creating 10 hierarchical clusters on the first trad-
ing day of each month from January 2000, to August 2018; for consistency and simplicity,
we sample the 1,000 largest stocks in each period by market capitalization for our exper-
iment. The first approach being from quantitative finance:

1. Calculate the correlation matrix of the stocks in each period, again using our stan-
dard 128 day window

2. Utilize a modified correlation matrix (in our case, 2 - Corr) to create a pseudo-
distance matrix D

3. Use the matrix D to calculate hierarchical cluster assignments for each period using
the Ward criterion (Ward Jr. 1963)

For comparison, we apply an alternative approach utilizing our learned representations:

1. Evaluate the embedding of each stock in each period by doing a forward pass through
our trained network up to the final fully connected layer

2. Calculate a distance matrix in the embedding space using the standard Euclidean
distance between each stock’s embedding

3. Use the matrix 2 to calculate hierarchical cluster assignments for each period using
the Ward criterion (Ward Jr. 1963)

We note that the representations we create generates clusters that are more similar
than correlation clusters in terms of their average risk-return profile in the 28 days fol-
lowing the first day of each period. This is, of course, natural given our training scheme,
which optimizes these representations to solve tasks related to this outcome. Still, it is
instructive that this structure is captured in the relative representations of each stock in
the embedding space. These results are summarized below.

We first evaluate how separated stocks are along some of our key metrics across clus-
ters. To calculate this, we:

1. Calculate the weighted average µt,j of each metrics yj (log returns, volatility, etc.)
across all clusters at time t

2. Calculate the intra-cluster volatilities at each time t as V1
(V 2

1 −V2) ×
∑
i∈t
wi(yt,i − µ∗t,j)2,

weighted by the number of stocks in each cluster, and for each metric

11 of 15

Exhibit 3 shows the weighted intra-cluster volatility of the mean stock volatilities, as a
measure of how well each clustering approach is able to group stocks that will have similar
volatilities in the future. As expected, our approach creates clusters that are consistently
better separated in terms of future volatility:

Exhibit 3: Intra-Cluster Volatility: Stock Volatilities

This is not the case for future returns, as can be seen in Exhibit 4. This is is also to be
expected, as predicting future returns based on time series data is known to be ineffective
due to rapid repricing. Nevertheless, we believe adding such tasks can induce the learned
embeddings to be more useful, even when the performance on a subset of training tasks
is not useful when taken in isolation (e.g., as is the case when training word embeddings).

Exhibit 4: Intra-Cluster Volatility: Stock Returns

Significance

We show that modern machine learning approaches can be used to learn distance metrics
at scale, and offer some examples on how such an approach may differ from using histor-
ical correlations. Learning tailored representations based on specific tasks is an approach
that has shown tremendous value in domains of natural language processing and image
processing, yet has not been utilized in finance. Financial time series data, however, is
comparable with those two domains through its abundance of training data to learn rich
representations. It is perhaps set to benefit even more from learning such representa-
tions due to the prevalence of distribution drift, and the abundance of varying financial
objectives that warrant learning more diverse representations of the same data.

The flexibility offered up can help create general-purpose embeddings that serve the
financial needs of creating stable, robust portfolios that account for overall market condi-
tions. It is natural to engineer tasks for pre-training that will create desirable properties
in representations of time series data, such as stability of representations over time and

12 of 15

incorporation of additional market data (including non-time series data such as finan-
cial news and fundamental data). All of these advantages make deep neural networks a
highly promising approach towards creating new ways to process market data, creating
rich representations suitable for improving existing financial strategies and creating new
ones.

Further Work / Limitations

Our future work will focus on additional improvements for stability, capturing additional
market information, and learning representations that best capture the behavior of the
market jointly.

Creating time series representations that control for stability of representations over
time is another promising area of research, which can help create systems of hedging and
portfolio construction that are stable over time (and hence more testable), helping reduce
some of the risk associated with potentially unknown failure points created by highly
nonlinear techniques such as deep learning.

Although such approaches can be criticized for their “black-box” nature, we argue
that the downside compared to the traditional correlation-driven approach is low. An
additional metric needs to be interpreted, but the portfolio construction and hedging
work can be performed as is. The additional flexibility neural networks offer of tailoring
the representations to specific pre-training tasks, and our ability to inject domain expertise
into how these tasks are specified, will over time lead to wider adoption of such systems.

References

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. arXiv: 1409.0473 [cs.CL].

Bao, Wao, Jun Yue, and Yulei Rao. 2017. “A deep learning framework for financial time
series using stacked autoencoders and long-short term memory.” PLOS One. doi:10.
1371/journal.pone.0180944.

Bengio, Yoshua. 2012. “Deep Learning of Representations for Unsupervised and Transfer
Learning.” In Proceedings of ICML Workshop on Unsupervised and Transfer Learning,
edited by Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel
Silver, 27:17–36. Proceedings of Machine Learning Research. Bellevue, Washington,
USA: PMLR, February.

Bengio, Youshua, Aaron Courville, and Pascal Vincent. 2012. Representation Learning: A
Review and New Perspectives. arXiv: 1206.5538 [cs.LG].

13 of 15

https://arxiv.org/abs/1409.0473
http://dx.doi.org/10.1371/journal.pone.0180944
http://dx.doi.org/10.1371/journal.pone.0180944
https://arxiv.org/abs/1206.5538

Cer, Daniel, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John,
Noah Constant, et al. 2018. “Universal Sentence Encoder for English.” In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, 169–174. Brussels, Belgium: Association for Computational Linguis-
tics. doi:10.18653/v1/D18-2029. https://www.aclweb.org/anthology/D18-2029.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. n.d. “BERT:
Pre-training of deep bidirectional transformers for language understanding.” North
American Association for Computational Linguistics (NAACL). arXiv: 1810.04805
[cs.CL].

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. “Deep Residual Learn-
ing for Image Recognition.” arXiv: 1512.03385.

León, Diego, Arbey Aragón, Javier Sandoval, Germán Hernández, Andrés Arévalo, and
Jaime Niño. 2017. “Clustering algorithms for Risk-Adjusted Portfolio Construction.”
International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland, Procedia Computer Science 108:1334–1343. issn: 1877-0509.
doi:https://doi.org/10.1016/j.procs.2017.05.185. http://www.science
direct.com/science/article/pii/S187705091730772X.

Li, Shiyang, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and
Xifeng Yan. 2019. Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting. arXiv: 1907.00235 [cs.LG].

Li, Wenbin, Jing Huo, Yinghuan Shi, Yang Gao, Lei Wang, and Jiebo Luo. 2018. Online
Deep Metric Learning. arXiv: 1805.05510 [cs.CV].

Li, Xiaocui, Hongzhi Yin, Ke Zhou, and Xiaofang Zhou. 2019. “Semi-supervised clustering
with deep metric learning and graph embedding.” World Wide Web. doi:10.1007/
s11280-019-00723-8.

Liu, Liyuan, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. 2019. “On the variance of the adaptive learning rate and beyond.”
arXiv: 1908.03265 [cs.LG].

Markowitz, Harry. 1952. “Portfolio Selection.” The Journal of Finance 7 (1): 77–91. issn:
00221082, 15406261. http://www.jstor.org/stable/2975974.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. “Efficient Estimation
of Word Representations in Vector Space.” arXiv: 1301.3781.

Siami-Namini, Sima, Neda Tavakoli, and Akbar Siami Namin. 2019. A Comparative Analy-
sis of Forecasting Financial Time Series Using ARIMA, LSTM, and BiLSTM. arXiv:
1911.09512 [cs.LG].

14 of 15

http://dx.doi.org/10.18653/v1/D18-2029
https://www.aclweb.org/anthology/D18-2029
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1512.03385
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.05.185
http://www.sciencedirect.com/science/article/pii/S187705091730772X
http://www.sciencedirect.com/science/article/pii/S187705091730772X
https://arxiv.org/abs/1907.00235
https://arxiv.org/abs/1805.05510
http://dx.doi.org/10.1007/s11280-019-00723-8
http://dx.doi.org/10.1007/s11280-019-00723-8
https://arxiv.org/abs/1908.03265
http://www.jstor.org/stable/2975974
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1911.09512

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, et al. 2018. “A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play.” Science 362 (6419): 1140–1144.
issn: 0036-8075. doi:10.1126/science.aar6404. eprint: https://science.scien
cemag.org/content/362/6419/1140.full.pdf. https://science.sciencemag.
org/content/362/6419/1140.

Varaku, Kerda. 2019. Stock Price Forecasting and Hypothesis Testing Using Neural Net-
works. arXiv: 1908.11212 [q-fin.ST].

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. arXiv:
1706.03762 [cs.CL].

Ward Jr., J.H. 1963. “Hierarchical Grouping to Optimize an Objective Function.” Journal
of the American Statistical Association 58 (301): 236–244. doi:10.1080/01621459.
1963.10500845. eprint: https://www.tandfonline.com/doi/pdf/10.1080/
01621459.1963.10500845. https://www.tandfonline.com/doi/abs/10.1080/
01621459.1963.10500845.

Zhuang, Fuzhen, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui
Xiong, and Qing He. 2019. A Comprehensive Survey on Transfer Learning. arXiv:
1911.02685 [cs.LG].

15 of 15

http://dx.doi.org/10.1126/science.aar6404
https://science.sciencemag.org/content/362/6419/1140.full.pdf
https://science.sciencemag.org/content/362/6419/1140.full.pdf
https://science.sciencemag.org/content/362/6419/1140
https://science.sciencemag.org/content/362/6419/1140
https://arxiv.org/abs/1908.11212
https://arxiv.org/abs/1706.03762
http://dx.doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/10.1080/01621459.1963.10500845
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1963.10500845
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1963.10500845
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
https://arxiv.org/abs/1911.02685

